

Abstract— Aim of the method presented in this paper is to
provide a simple and unique communication protocol for a wide
variety of sensors and actuators. All of the devices are equipped
with a microcontroller in order to translate the proprietary
device dependent protocol into the protocol presented here,
named Simple Sensor Network (SSN). Due to the very simple
commands to request data from a sensor respectively to send
data to an actuator via RS232, it is an appropriate way for a
novice to get in touch with robotics without the need of expert
knowledge in electronics or programming. SSN makes a system
easy to maintain, to adapt, and to extend.

I. INTRODUCTION

Usually an autonomous robotic system consists of sensors,
actuators and a computer controlling both device types and
applying algorithms to them. Similar sensors and actuators
often provide totally different interfaces. Therefore
reimplementation and testing of interfaces requires a
substantial part of development time. The proposed system
provides a simple and unique communication protocol for a
wide variety of sensors and actuators. The protocol is named
Simple Sensor Network (SSN). A sensor or actuator in
combination with a microcontroller forms an SSN module.
Purpose of the microcontroller is to translate the proprietary
device dependent protocol into SSN commands.

Once an SSN controller is developed for a certain sensor
or actuator it can be reused in other applications by “plug
and play”. The device network is scaleable in terms of
numbers of devices and every device can be addressed
individually. In contrast to common protocols used on
embedded systems like I²C [1] or CAN [2] the proposed
system is based on RS232 standard which makes it easily
connectable to both personal computers and
microcontrollers.

A light following SSN robot demonstrates the
practicability and simplicity of the protocol. Furthermore
SSN is implemented and tested successfully on the "Roboat"
[3,4], a fully autonomous sailboat which won the
Microtransat [5,6,7], an international competition in
autonomous sailing.

II. HARDWARE TOPOLOGY

An SSN topology consists of at least one SSN module –
sensor or actuator – and a master. The master controls the
entire system. The communication is always initiated by the
master. An SSN module can directly be connected to the
master’s serial port. In this case the number of SSN modules

Roland Stelzer and Karim Jafarmadar are with the Austrian Association

for Innovative Computer Science, Kampstraße 15/1, 1200 Vienna, Austria.
E-Mail: roland.stelzer@innoc.at and karim.jafarmadar@innoc.at

is limited to the number of serial ports of the master. If a PC
is used as master system, usually not more than one or two
serial interfaces are available.

To connect more SSN modules an additional device, the
SSN switch, can be put in between the master and the SSN
modules (Fig. 1). Up to 15 SSN modules can be connected to
a single SSN switch. The SSN switch itself is connected to
the master and listens for a request packet coming from the
master. The SSN packet includes an address from 0x0 to
0xE, which specifies the port of the SSN switch to which the
desired SSN Module is connected.

Master
SSN

Switch

SSN Module

SSN Module

.

.

.

0x0

0xE

.

.

.

Fig. 1: SSN Topology

For systems with more than 15 SSN modules, SSN
switches can be cascaded (Fig. 4, Fig. 5).

III. COMMUNICATION FLOW

The communication between master, SSN switch and SSN
modules is always initiated by the master. The master can
either set an actuators value or gather a sensor value. In both
cases a request packet has to be sent from master to SSN
switch. When a request occurs the SSN switch acts as
follows:

1. SSN switch receives request packet from master.
2. SSN switch extracts the address part of the

packet.
3. SSN switch forwards the complete packet to the

switch-port corresponding to the address
extracted before.

4. SSN switch waits for a reply packet from the
SSN module and routes it back to the master. If
no reply occurs within 100 ms, a timeout
message will be returned to the master by the
SSN switch.

A. Request Packet

The Request Packet consists of a header byte and an
optional data part. The header is divided into four bits for the
module address and four bits for the command, which has to
be applied to the particular SSN module.

Simple Communication Protocol for Rapid Robot Prototyping

Roland Stelzer and Karim Jafarmadar

...

Header Data (opt.)

Address Command
Fig. 2: Request Packet

Valid addresses are numbers from 0x0 to 0xE. 0xF
indicates cascading of multiple SSN switches. The
commands can be classified into three groups (Table I):

• Get general information about a particular SSN
module (command id 0x0 – 0x1).

• Get value of a sensor device respectively status
of an actuator (command id 0x2 – 0x5).

• Set value of an actuator device respectively
change settings of a sensor (command id 0x6 –
0x9). These commands contain a data part in
addition to the header. The length of data
depends on the command.

 The commands getinfo short and getinfo long are

supported by every SSN module. The reply packet on a
getinfo short request gives information about the additionally
supported commands. getinfo long returns a textual
description of the particular SSN module.

B. Standard Reply Packet

When an SSN module receives a request packet, it
processes the command and returns a reply packet. The first
byte of the reply packet is identical to the first byte of the
preceding request. Thus the most-significant half-byte
contains the address (SSN switch port number where the
module is connected to) and the least-significant half-byte
describes the command. By means of the command, the SSN
switch determines the number of bytes following the header
byte (Table I).

C. Info Reply Packet

The commands getinfo short and getinfo long deliver
general information about an SSN module. getinfo long

returns a textual description of the SSN module as a 0-
terminated string following the unmodified request header.

The reply packet on a getinfo short request gives
information about the additionally supported commands.

Header Module Code

Address 0x0

Capability Flags

0 - 255

getdata byte
getdata word

getdata double word
getdata string

setdata byte
setdata word

setdata double word
setdata string

Fig. 3: Reply Packet for getinfo short

In addition to the unmodified request header the reply

packet contains a module code, which can be used by the
module developer to categorize SSN modules. A third byte
informs about the range of implemented SSN commands
(Fig. 3).

D. Timeout Reply Packet

If the SSN switch does not receive a reply packet from the
SSN module within 100 ms a timeout occurs. In this case the
SSN switch generates a timeout reply packet which consists
of the address of the particular SSN module and the error
indicator 0xF. No data bytes follow. A reply packet after
timeout will be ignored.

IV. CASCADING

Through cascading of multiple SSN switches, systems
with more than 15 SSN modules can be set up (Fig. 4). Each
SSN switch can be equipped with a special cascade port with
the cascade address 0xF.

Master
SSN
Switch
#1

SSN Module B

0x0
0x1
0x2

0xE

.

.

.

SSN
Switch
#2

0x0

0xC
0xD
0xE

SSN Module A

.

.

.

0xF

Fig. 4: Cascade Port

If more than one SSN switch has to be passed on the way
between master and SSN Module, an extra header byte is
necessary for each additional SSN switch. The most-
significant half-byte of this header contains 0xF. This
indicates that it is a cascade-header and the direct recipient
of the packet is not an SSN module, but an additional SSN
switch. The least-significant half-byte of the cascading
header contains the port number to which the additional SSN
switch is connected.

TABLE I

SSN COMMANDS

Command
ID

Command Description Data length (bytes)
request / reply

0x0 getinfo short 0 / 1

0x1 getinfo long (0-terminated) 0 / variable

0x2 getdata string (0-terminated) 0 / variable

0x3 getdata byte 0 / 1

0x4 getdata word 0 / 2

0x5 getdata double word 0 / 4

0x6 setdata string (0-terminated) variable / 0

0x7 setdata byte 1 / 0

0x8 setdata word 2 / 0

0x9 setdata double word 4 / 0

0xA – 0xE <not in use> -

0xF error indicator in reply packets -

If the SSN switch receives a cascade header it discards the
first byte. It forwards the rest of the packet to the following
SSN switch and waits for a reply like with directly connected
SSN modules. With this strategy, any number of SSN
switches can be cascaded, as long as the packet runtime does
not exceed the timeout limit.

Not only the standard cascade port 0xF, but any of the
ports can be used to cascade (Fig. 5). By using multiple ports
for cascading the number of hops between master and SSN
module and the packet runtime can be minimized.

Master
SSN
Switch
#1

SSN Module B0x0
0x1
0x2

0xE

.

.

.

SSN
Switch
#2a

0x0

0xC
0xD
0xE

.

.

.

SSN
Switch
#3

0x0
0x1
0x2

0xE

.

.

.

SSN Module A

.

.

.

SSN
Switch
#2b

0x0

0xC
0xD
0xE

SSN Module C

SSN Module D

SSN
Switch
#2

0x0

0xC
0xD
0xE

.

.

.

0xF

.

.

.

Fig. 5: Complex SSN Topology

V. COMMUNICATION EXAMPLE

The demonstration Topology is illustrated in Figure 5.
SSN Module B is supposed to be a distance sensor. The
command getdata byte (0x3) requests the measured distance
in cm as 8 bit integer. The data flow from master to module
is shown in Figure 6.

cascade indicator
cascade port to SSN switch #2a
cascade indicator
cascade port to SSN switch #3
address of SSN Module B
command "getdata byte"

0xF 0x0 0xF 0xD 0x30x1 Master � SSN switch #1

0xF 0xD 0x30x1 SSN switch #1 � SSN switch #2a

0x30x1 SSN switch #2a � SSN switch #3

0x30x1 SSN switch #3 � SSN Module B

0x1 0x3 25 SSN Module B � SSN switch #3

address of SSN Module B
command "getdata byte"
data: distance = 25 cm

request header

0x1 0x3 25 SSN switch #3 � SSN switch #2a

0x1 0x3 25 SSN switch #2a � SSN switch #1

0x1 0x3 25 SSN switch #1 � Master

R
eq

ue
st

R
ep

ly

Fig. 6: Communication Example acc. to Fig. 5 - getdata byte from SSN

Module B

VI. APPLICATION EXAMPLE

For experiments controller hardware of SSN modules is
based on Microchip PIC microcontrollers [8]. Software
templates programmed in C [9] allow easy and fast
development of new SSN modules.

A. Light Following SSN Robot

The robot in Figure 7 consists two side mounted
independently driven wheels which are used for both
propulsion and steering. This robot has a caster wheel
mounted at the front to keep it from falling over. The robot is
equipped with two brightness sensors, one pointed to the left,
the other one to the right. The brightness sensors as well as
the motor controllers for the wheels are connected to an SSN
switch. Aim of the robot’s algorithm is to follow a light
source. The algorithm is executed by the master, which can
be a laptop computer.

Master
(Laptop)

SSN
Switch

0x0

0x1

0x2

0x3
.
.
.

Brightness Sensor left

Brightness Sensor right

Motor Controller left

Motor Controller right

Fig. 7: Light Following SSN Robot

Only the SSN modules know about the device dependent
protocols of the sensors and actuators and translate them to
SSN commands. The master knows the SSN switch port
number of every connected SSN module. The master
communicates with the SSN modules using simple SSN
commands (setdata byte, getdata byte). Therefore a few lines
of code suffice to implement a light following robot.

Pseudo code example:

left=getdata_byte(0x1) // read brightness left
right=getdata_byte(0x2) // read brightness right
if (left > right) // light is left -> go to left
 setdata_byte(0x0,100) // set left motor speed to 100
 setdata_byte(0x3,200) // set right motor speed to 200
else // light is right -> go to right
 setdata_byte(0x0,200) // set left motor speed to 200
 setdata_byte(0x3,100) // set right motor speed to 100

B. Autonomous Sailboat "Roboat"

SSN is successfully implemented and used on the
autonomous sailboat "Roboat". The boat won in the first
Microtransat Challenge for autonomous sailboats in
Toulouse, France, June 2006. The "Roboat" demonstrated
completely autonomous sailing, where routeing, navigation
and carrying out the manoeuvres run automatically and
directly on the boat. For this purpose a sailboat is equipped
with various sensors to measure the environmental
conditions and actuators to control the rudder and sails.
These devices are connected to the master via an SSN switch
and communicate through SSN (Fig. 8).

SSN Switch

servo controller

remote control
Master

(Via Board)

boom position

emergency motor receiver

sail winch

rudder servo

wind direction

wind speed

Compass und
heeling

GPS Module

0x1

0x0

0x2 0x3

battery monitor

0x4

Fig. 8: "Roboat" Topology

VII. CONCLUSIONS

A robotic system applies an algorithm to a set of sensors
and actuators. Different sensors respectively actuators
usually mean different ways of communication. SSN
provides a set of commands which allow uniform
communication to a wide range of devices. Due to its simple
command structure SSN is a proper way for novices to set up
a robotic application. Once an SSN module is available there
is no need to care about the specific characteristics of the
sensor/actuator hardware.

The protocol is based on standardized serial
communication (RS232). Therefore the SSN modules can be
connected to a lot of different systems (PC, PDA,
microcontrollers, etc.) and all popular programming
languages can be used. Up to 15 SSN modules can be
connected to a single SSN switch. Cascaded SSN switches
allow larger installations.

The standardized set of SSN commands allows replacing
sensors/actuators without changes in the master’s program
code. As an example, it is possible to replace an infrared
distance sensor with an ultrasonic one.

SSN is successfully implemented and used on the
autonomous sailboat "Roboat" and shows its strength
especially in the prototyping phase where the system
topology and the used devices frequently change. SSN
makes a robot prototype easy to set up, to adapt, and to
extend.

REFERENCES

[1] Philips Semiconductors, “The I²C-Bus Specifications”, Version 2.1,
Jan. 2000 [online]. Available:
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf

[2] J.A. Gil, A. Pont, G. Benet, F.J. Blanes , M.Martínez “A CAN
Architecture for an Intelligent Mobile Robot”. Proceedings of IFAC
Symposium on Intelligent Components and Instruments for Control
Applications SICICA'97, pp.65-70. Annecy, 1997.

[3] R. Stelzer, T. Pröll, and R.I. John, Fuzzy Logic Control System for
Autonomous Sailboats, Accepted for publication at IEEE
International Conference on Fuzzy Systems 2007, London, UK.

[4] R. Stelzer and T. Pröll, “Autonomous sailboat navigation for short
course racing,” submitted for publication, 2007.

[5] Y. Briere, “First Microtransat Challenge” [online].
Available: www.ensica.fr/microtransat, 2006.

[6] C. Sauze and M. Neal, “An Autonomous Sailing Robot for Ocean
Observation,” in Proceedings of TAROS Conference 2006 [online].
Available: http://taros.mech.surrey.ac.uk/papers/Sauze_Neal.pdf,
2006.

[7] M. Neal, “A hardware proof of concept of a sailing robot for ocean
observation,” IEEE Journal of Ocean Engineering, vol. 31, pp. 462-
469, 2006.

[8] Microchip, “PIC Microcontrollers” [online].
Available: http://www.microchip.com

[9] Custom Computer Services Inc., “CCS C Compiler for PIC
Microcontroller”, [online]. Available: http://www.ccsinfo.com

